Search results

1 – 3 of 3
Article
Publication date: 6 March 2017

Yuliya Pleshivtseva, Edgar Rapoport, Bernard Nacke, Alexander Nikanorov, Paolo Di Barba, Michele Forzan, Sergio Lupi and Elisabetta Sieni

The purpose of this paper is to describe main ideas and demonstrate results of the research activities carried out by the authors in the field of design concepts of induction mass…

Abstract

Purpose

The purpose of this paper is to describe main ideas and demonstrate results of the research activities carried out by the authors in the field of design concepts of induction mass heating technology based on multiple-criteria optimization. The main goal of the studies is the application of different optimization methods and numerical finite element method (FEM) codes for field analysis to solve the multi-objective optimization problem that is mathematically formulated in terms of the most important optimization criteria, for example, maximum temperature uniformity, maximum energy efficiency and minimum scale formation.

Design/methodology/approach

Standard genetic algorithm (GA), non-dominated sorting genetic algorithm (NSGA) and alternance method of parametric optimization based on the optimal control theory are applied as effective tools for the practice-oriented problems for multiple-criteria optimization of induction heaters’ design based on non-linear coupled electromagnetic and temperature field analysis. Different approaches are used for combining FEM codes for interconnected field analysis and optimization algorithms into the automated optimization procedure.

Findings

Optimization procedures are tested and investigated for two- and three-criteria optimization problems solution on the examples of induction heating of a graphite disk, induction heating of aluminum and steel billets prior to hot forming.

Practical implications

Solved problems are based on the design of practical industrial applications. The developed optimization procedures are planned to be applied to the wide range of real-life problems of the optimal design and control of different electromagnetic devices and systems.

Originality/value

The paper describes main ideas and results of the research activities carried out by the authors during past years in the field of multiple-criteria optimization of induction heaters’ design based on numerical coupled electromagnetic and temperature field analysis. Implementing the automated procedure that combines a numerical FEM code for coupled field analysis with an optimization algorithm and its subsequent application for designing induction heaters makes the proposed approach specific and original. The paper also demonstrates that different optimization strategies used (standard GA, NSGA-II and the alternance method of optimal control theory) are effective for real-life industrial applications for multiple-criteria optimization of induction heaters design.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 January 2020

Yuliya Pleshivtseva, Edgar Rapoport, Bernard Nacke, Alexander Nikanorov, Paolo Di Barba, Michele Forzan, Elisabetta Sieni and Sergio Lupi

This paper aims to investigate different multi-objective optimization (MOO) approaches for design and control of electromagnetic devices. The main goal of MOO is to find the set…

Abstract

Purpose

This paper aims to investigate different multi-objective optimization (MOO) approaches for design and control of electromagnetic devices. The main goal of MOO is to find the set of design variables or control parameters which will provide the best possible values of typical conflicting objective functions.

Design/methodology/approach

In the research studies, standard genetic algorithm (GA), non-dominated sorting GA (NSGA-II), migration NSGA algorithm and alternance method of optimal control theory are discussed and compared.

Findings

The test practical problems of multi-criteria optimization of induction heating processes with respect to chosen quality criteria confirm the effectiveness of application of considered MOO approaches both for the problems of design and control.

Originality/value

This paper represents and investigates different MOO approaches for design and control of electrotechnological systems.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 39 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 January 2020

Yuliya Pleshivtseva, Marco Baldan, Anton Popov, Alexander Nikanorov, Edgar Rapoport and Bernard Nacke

This paper aims to describe main ideas and demonstrates results of the research activities carried out by the authors in the field of optimal design concepts for induction heater…

119

Abstract

Purpose

This paper aims to describe main ideas and demonstrates results of the research activities carried out by the authors in the field of optimal design concepts for induction heater for surface hardening. The main goal of the research studies is the application of different optimization methods and numerical finite element method (FEM) codes for field analysis to solve the optimal design problem that is mathematically formulated in terms of the one of the most important optimization criteria for surface hardening technology, e.g. maximum temperature uniformity within the hardening surface layer.

Design/methodology/approach

Evolutionary algorithm based on Adaptive Gaussian Process-Assisted Differential Evolution for MEMS Design Optimization (AGDEMO) and alternance method of parametric optimization based on optimal control theory are applied as effective tools for the practice-oriented problem for optimization of induction heater design based on non-linear coupled electromagnetic and temperature field analysis. Different approaches are used for combining FEM codes for interconnected field analysis and optimization algorithms into automated optimization procedure.

Findings

Optimization procedures are tested and investigated for optimal design problem solution on the examples of induction hardening of steel cylindrical billet.

Practical implications

Solved problems are based on the design of practical industrial applications. The developed optimization procedures are planned to be applied to the wide range of real-life problems of the optimal design of different electromagnetic devices and systems.

Originality/value

This paper describes main ideas and results of the research activities carried out by the authors in the field of optimal design of induction heaters for hardening based on numerical coupled electromagnetic and temperature field analysis. The implementation of the automated procedure that combines a numerical FEM code for coupled field analysis with an optimization algorithm and its subsequent application for designing induction heaters makes the proposed approach specific and original. This paper also demonstrates that different optimization strategies used (evolutionary algorithm based on AGDEMO and alternance method of optimal control theory) are effective for real-life industrial applications for optimization of induction heaters design.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 39 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 3 of 3